For surface matching/identification,

1 paramefric
it is often very helpfal to thimk. abount the grid curces i.e- holding one parameter constartit
e.g. 13 〈ucosv, usinv,v〉
u const \longrightarrow helines
v const lines lemzunating fim z axis parallel
(14) Both families of grid carves To xyplanel ane parabolas.

Remember that a surface of the form

$$
z=f(x, y) \quad \text { (i.e z graph })
$$

has a ratuial paraurutuiention:

$$
\begin{aligned}
& x=x \\
& y=y \\
& z=f(x, y)
\end{aligned}
$$

Q: Can you parametrize the surface

$$
\begin{array}{ll}
x^{2}+y^{2}+z^{2}=4 & \\
x=2 \sin \phi \cos \theta & 0 \leq \phi \leq \pi \\
y=2 \sin \phi \sin \theta & 0 \leq \theta \leq 2 \pi \\
z=2 \cos \phi &
\end{array}
$$

Can poo write down the outwards pointing unit normal vector to this surface (in terms of ϕ, θ)?

Q: How to decide whether to take

$$
\vec{r}_{\phi} \times \vec{r}_{\theta} \text { or } \vec{r}_{\theta} \times \vec{r}_{\phi} ?
$$

A1: Interpret the two derivatives geometrically ant then apply RHR.

A2 : Pick one of the two: Compute it.
Then plug in an "easy" point, and see if your cross product points in the correct direction there.

If yes
If not, just take its negative,

Final ans to q :

$$
\frac{\stackrel{\rightharpoonup}{p}_{\phi} \times \vec{r}_{\theta}}{\left|\vec{r}_{\phi} \times \vec{r}_{\theta}\right|}
$$

(*)

In this particular problem, we already
have a Cartes ran eq:

$$
x^{2}+y^{2}+z^{2}=4
$$

so a normal vec is given by $\langle 2 x, 2 y, 2 z\rangle$
This is outwards; as desired

$$
\begin{aligned}
& \frac{\langle 2 x, 2 y, 2 z\rangle}{\sqrt{4 x^{2}+4 y^{2}+4 z^{2}}}=\frac{\langle 2 x, 2 y, 2 z\rangle}{4} \\
& =\frac{1}{2}\langle x, y, z\rangle \\
& =\langle\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi\rangle
\end{aligned}
$$

(this is the same as. (*), as goo can check)

Please veter to 213 notes for unsivers to polley sunky.

